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THE IMPACT O F  V/STOL AIRCRAFT ON 

INSTRLTMENT WEATHER OPERATIONS* 

By John P. Reeder 
Langley Research Center 

I n  addition t o  the  capabi l i ty  of V/STOL a i r c r a f t  t o  operate from small 
unprepared f i e l d s ,  they have a po ten t i a l  f o r  sa fe ly  achieving "zero-zero" 
weather operation. They may a l so  prove themselves economically by increasing 
the  capacity of terminal a i r p o r t s  through b e t t e r  use of avai lable  airspace,  
given t h e i r  own instrument approach and landing f a c i l i t i e s .  To accomplish 
these goals t h e  a i r c r a f t  m u s t  be operated i n  p a r t i a l l y  converted configurations 
f o r  several  minutes under instrument flight conditions. The s ta te-of- the-ar t  
l imi ta t ions  imposed by handling qua l i t i e s ,  p i l o t  displays,  and guidance systems 
d ic t a t e  maximum instrument approach angles on the  order of 6 O  and minimum 
speeds of about 45 knots f o r  operational use. Instrument approach pa t te rns  are 
then determined by the  t i m e  required f o r  t he  p i l o t  t o  es tab l i sh  himself on the  
approach courses, with the  l imi ta t ion  t h a t  he handle t h e  minimum number of var- 
i ab l e s  a t  one time t o  stay within h i s  capabi l i t i es ,  considering present i n s t ru -  
ment displays. Unfortunately, t he  minimum t i m e  required f o r  such an instrument 
approach i s  about 5 minutes which, f o r  j e t  V/STOL, represents high f u e l  con- 
sumption and a prohibi t ive reduction i n  range and payload. Since the  p i l o t  can 
execute an approach and landing i n  perhaps 1I minutes under v i sua l  conditions, 

it i s  apparent t h a t  t he  saving of about 3- minutes of high-power approach t i m e  

s e t s  a goal f o r  development of instrument displays and guidance systems. Other- 
wise, t he  j e t  V/STOL, a t  l e a s t ,  must perform t h e  instrument approach a s  an a i r -  
plane, observing higher than airplane weather minima, u n t i l  v i sua l  contact with 
the  landing area i s  established. 
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INTRODUCTION 

Everyone i s  fami l ia r  with t h e  po ten t i a l  of V/STOL a i r c r a f t  t o  operate from 
s m a l l ,  unprepared f i e l d s .  I n  addition, V/STOL a i r c r a f t  have t h e  po ten t i a l  f o r  

*An e a r l i e r  vers ion of t h i s  paper w a s  presented t o  t h e  AGARD Fl ight  
Mechanics Panel Meeting on "All-Weather Operation" i n  Munich, Germany, 
October 1964. 



safe ly  approaching the  i d e a l  of "zero-zero" weather operation. However, the  
impact of V/STOL a i r c r a f t  on instrument weather operations, i n  general, w i l l  
not be appreciable i n  the  next 10 years because of the  extensive research and 
development needed i n  p i l o t  displays,  instrument approach techniques, and a i r -  
c r a f t  handling charac te r i s t ics  i n  order t o  make low-speed, precision instrument 
approaches p rac t i ca l .  Once these problems a r e  solved, however, it would seem 
possible t o  operate with grea t ly  reduced weather minima and, with advanced plan- 
ning, t o  accommodate V/STOL and CTOL (conventional take-off and landing) air-  
c r a f t  t r a f f i c  simultaneously i n  a terminal area with the  r e s u l t  of increased 
airspace u t i l i z a t i o n  and a i rpo r t  capacity. 

BENEFITS OF NEAR "ZERO-ZERO" CAPABILITY 

The benefi ts  t o  commercial operations from operation i n  lower weather 
minima w i l l  come from a reduction of diversions and missed approaches, and a. 
reduction i n  cancellations due t o  ex is t ing  or forecast  minimum weather condi- 
t ions ,  a s  well as a reduction i n  t r a f f i c  delays by making be t t e r  use of  a i r -  
space pa r t i cu la r ly  i n  high-density terminal areas .  
cost  now predicted f o r  e lectronic  equipment t o  reduce minimas below 100 f e e t  
and l/k-mile v i s i b i l i t y  f o r  t he  present j e t  t ransports  predicted i n  references 1 
and 2 may not hold t rue  f o r  t he  much slower V/STOL landings because the p i l o t  
w i l l  have more time f o r  f l ight-path corrections a f t e r  es tabl ishing v i sua l  con- 
t a c t  with h i s  landing area.  

The uneconomically high 

P a r a l l e l  advantages w i l l  be rea l ized  f o r  mi l i ta ry  operations. S t r ike  
f igh te r  so r t i e s  or low-level reconnaissance, a s  well a s  troop movements, under 
weather conditions t h a t  now severely hamper mi l i t a ry  a i r  operations f o r  a typi-  
c a l  northern European winter, f o r  example, would provide a t e r r i f i c  mi l i ta ry  
advantage of surpr ise  and movement. The thought i s  of t he  capabi l i ty  of safe  
and p rac t i ca l  v i sua l  f l i g h t  operations under low ce i l ings  and low v i s i b i l i t i e s  
through use of reduced speeds a s  well  a s  the  capabi l i ty  of instrument operation 
down t o  the  t reetops f o r  re turn  t o  home base when necessary. 

STATE OF THE ART IN V/STOL INSTRUMENT OPERATION 

It i s  safe  t o  say t h a t  no "high-performance" instrument f l i g h t  ( s l o w  speed 
and steep gradient t o  a spec i f ic  landing spot)  has ye t  been conducted with 
V/STOL a i r c r a f t  other  than hel icopters .  A s  a matter of f ac t ,  a f t e r  more than 
20 years, "high-performance" instrument f l i g h t  with hel icopters  i s  not now 
being pract iced operationally.  The f i rs t -generat ion test-bed V/STOL a i r c r a f t  
flown i n  the  United S ta tes  have been t o t a l l y  unsuitable for instrument approach 
invest igat ion although several  have been studied with t h e  instrument approach 
i n  mind. 
has not been developed and seems a very long way of f ,  so w i l l  not be discussed, 
except t o  say t h a t  it w i l l  have t o  be compatible with, and developed concur- 
r en t ly  with, a su i tab le  guidance system which i s  also, a t  present,  nonexistent. 
The p i l o t ' s  job, as a necessary pa r t  of the control  loop f o r  the  immediate 

A t  t he  moment, the  automatic approach f o r  general V/STOL appl icat ion 
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future  w i l l  not be simple, even with s t a b i l i t y  and control  augmentation, and 
he w i l l  need improved displays. The current displays avai lable  f o r  service use 
are considered interim and do not give t h e  p i l o t  t he  immediate impressions of 
h i s  "real world" s i t ua t ion  necessary t o  do the  job a s  expeditiously as he does 
v isua l ly  . 

It was learned i n  s tudies  a t  t he  NASA Langley Research Center, several  
years ago, t h a t  maneuvers such a s  t h e  landing approach which a r e  performed 
eas i ly  i n  hel icopters  v i sua l ly  are an order of magnitude more d i f f i c u l t  under 
instrument f l i g h t  conditions with state-of-the-art  p i l o t  displays, pa r t i cu la r ly  
when following a precision guidance system t o  a spec i f ic  landing spot.  These 
hel icopter  s tudies  ( r e f s .  3 and 4) i l l u s t r a t e  problems of p i lo t ed  instrument 
f l i g h t  which are functions of speed and other fac tors  common t o  a l l  V/STOL a i r -  
c r a f t .  So far, it has not been found possible t o  make v e r t i c a l  approaches on 
instruments, even with su i tab le  guidance systems. (See ref. 5 . )  Limitations 
on the  minimum speed su i t ab le  f o r  f l ight,  i n  combination with l imi t ing  r a t e s  of 
descent, determine usable f l igh t -pa th  angles f o r  approach. For instance,  t h e  
angular deviations i n  f l i g h t  path i n  a given t i m e  f o r  a given upset i n  a t t i t u d e  
a r e  inversely proportional t o  speed, and normal accelerat ion cues as a warning 
or  a s  a guide f o r  the  p i l o t  a r e  noticeably lacking a t  low speed. A l s o ,  wind 
e f f ec t s  on r a t e  of approach t o  touchdown, rate of descent, and heading o f f se t  
t o  counteract dr i f t ,  and the  wind gradient e f f ec t s  i n  descent on dr i f t  and 
glide-path corrections become large a t  low speeds. I n  f a c t ,  t h e  e f f ec t s  of 
wind gradients and gusts on glide-path control  become increasingly more pro- 
nounced as the  gl ide path i s  steepened. A t  t he  low speeds su i tab le  f o r  gl ide-  
path angles of 6 O  or  over, l i f t -  o r  t h rus t - th ro t t l e  changes o r  angular vectoring 
of a l i f t - t h r u s t  system w i l l  be the  primary glide-path control .  In  a l l  other 
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Figure 1.- Glide-path angle as a func t ion  of speed for desirable 
and l i m i t i n g  rates of descent. 

respects  normal p i lo t ing  techniques 
have been found bes t  down t o  t h e  low- 
est p rac t i ca l  speeds - t h a t  i s ,  t h e  
a i r c r a f t  i s  flown l a t e r a l l y  l e v e l  
with a heading o f f se t  f o r  d r i f t  cor- 
rec t ion  and i s  turned f o r  l a t e r a l  o f f -  
s e t  correction by banking, keeping 
s ides l ip  zero. Maximum rates of 
descent found su i tab le  f o r  low 
approaches have been 500 t o  TOO feet 
per  minute. Figure 1 shows the  rela- 
t ionship of speed t o  glide-path angle 
a t  these descent ra tes .  

A s  i n  a l l  instrument f l i g h t ,  con- 
s ider ing present ly  avai lable  p i l o t  
f l i g h t  instrumentation, t he  p i l o t  must 
e s sen t i a l ly  execute one t a s k  a t  a 
t i m e .  For t h e  instrument approach, 
therefore ,  he m u s t  keep the number of 
var iables  a t  a m i n i m  so  he can con- 
centrate ,  insofar  a s  possible,  on 
f ly ing  the  precis ion approach path. 
Keeping the  number of var iables  a t  a 
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minimum means f ly ing  a s t r a i g h t  path and maintaining an e s sen t i a l ly  constant 
speed and configuration u n t i l  breakout. 

A s  approach paths were steepened i n  the  hel icopter  invest igat ions it was 
found t h a t  increased an t ic ipa t ion  was required i n  acquiring the  g l ide  path t o  
prevent overshooting and d i f f i c u l t  correct ions l a t e r .  
90 seconds, or  1- minutes, a r e  necessary on the  descent path i n  order t o  become 

adequately establ ished on it, considering t h a t  marked wind gradient e f f ec t s  a t  
low speeds a re  comonly encountered i n  moderate winds a t  heights of about 
200 f e e t ,  and i n  s t rong winds up t o  heights of 500 t o  TOO f e e t .  

It was found t h a t  about 
1 
2 

It i s  generally agreed t h a t  a t  t h e  lower speeds possible  with V/STOL a i r -  
c r a f t  s t a b i l i t y  and/or control  augmentation w i l l  be required f o r  operational 
"high-performance" instrument approaches even though it i s  believed t h a t  t he  
a i r c r a f t  can, with adequate design, be flown by the  p i l o t  with no augmentation 
i n  v i sua l  f l i g h t  conditions. The augmentation may be i n  the  form of angular 
ve loc i ty  damping or  a t t i t u d e  s t ab i l i za t ion .  A t  any r a t e ,  adverse yaw or side- 
s l i p  i n  turning maneuvers should be kept t o  a low value. Recently, two la rge  
STOL airplanes,  one a je t  with a blown f l a p  and t h e  other  a propeller-driven 
type, have used control  interconnection very successful ly  t o  reduce yaw due t o  
use of r o l l  control.  It has been found from NASA Ames Research Center t e s t s  
( r e f .  6 )  t h a t  the  use of t he  s ides l ip  der ivat ive i n  s t a b i l i z a t i o n  systems 
can successfully l i m i t  and damp s ides l ip  excursions, preferably i f  used i n  com- 
bination with control  interconnection. The la rge  j e t  STOL a i r c r a f t  mentioned 
above uses t h i s  der ivat ive with considerable success. A t  speeds lower than 
those t h a t  STOL a i r c r a f t  a r e  capable of,  however, the need f o r  addi t iona l  aug- 
mentation inputs  can be expected. Figure 2 shows var iab le  s t a b i l i t y  hel icopter  
r e s u l t s  from reference 7 which ind ica te  d i r ec t iona l  cha rac t e r i s t i c s  desirable  
f o r  easy and precise  course corrections f o r  a precis ion instrument approach a t  
45 knots. 
degree-of-freedom yaw osc i l l a t ions .  

The optimum l i n e  indicated corresponds t o  c r i t i c a l  damping of s ingle-  

A f i r s t  look a t  t he  U.S. V/STOL tes t -bed a i r c r a f t  ind ica tes  several  char- 
a c t e r i s t i c s  of importance t o  the  instrument approach. For those V/STOL a i r -  
c r a f t  with a f ixed wing having no s t a l l  protect ion,  such as  the j e t  or tilt- 
duct, control  of angle of a t t ack  w i l l  be required except a t  very low speeds. 
Such a i r c r a f t  tend toward inadvertent and accelerated s e t t l i n g  a t  low speed i f  
l i f t  t h rus t  o r  power i s  not cor rec t ly  adjusted,  thus aggravating angle-of-attack 
control .  Also, a t  constant speed, t he  control  of r a t e  of descent by l i f t  th rus t  
or power changes alone t o  s t ay  on the  gl ide path represents  a changing angle of 
a t t a c k  which must be within ce r t a in  acceptable l i m i t s .  If angle of a t tack  must 
be control led within moderate l i m i t s ,  approximate drag balance on steep gl ide 
paths must be obtained by vectoring the l i f t - t h rus t  system. (See ref. 8.) 
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Figure 2.- Static direct ional stability as a funct ion of damping found satisfactory fo r  ILS approach at 45 knots. 
Crit ical damping indicated i s  for single-degree-of-freedom yaw oscillations. 

INSTRUMENT APPROACH FOR THE FIRST-GENERATION V/STOL AIRCRAFT 

Factors Establ ishing the Approach Pa t te rn  

The fac tors  which determine the  instrument approach pa t te rn  are:  (1) Con- 
d i t i ons  a t  the  landing s i t e  such a s  the  weather minima capabi l i ty  desired,  t he  
s i ze  and preparation of t he  landing area,  and the  surrounding t e r r a i n  features;  
and (2)  the  l imi ta t ions  of t h e  a i r c r a f t  and the  p i l o t  (considering his ins t ru -  
ment displays)  i n  negot ia t ing a "high-performance" f l i g h t  path. I n  accord with 
the  previous discussion of the  present s t a t e  of experience and development i n  
V/STOL instrument f l i g h t  it i s  assumed t h a t  an e s sen t i a l ly  constant speed and 
constant gl ide angle w i l l  be maintained u n t i l  v i sua l  contact i s  made by the  
p i l o t  with the  landing spot i n  the  case of VTOL operation, o r  t he  approach end 
of t he  runway, i n  the  case of an STOL operation. The use of approach l i gh t ing  
systems i s  not considered herein.  

I 
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The v i s i b i l i t y  required 
3500 t o  perform v i sua l  VTOL and 

STOL landings from 3 O  or 6' 
gl ide  slopes i s  shown i n  f i g -  
ure 3 .  

I- -1/2 MI ce i l i ng  required for VTOL and 
LL 2500- STOL landings from 3 O  and 6 O  

n paths. The p l o t s  were derived 
by assuming t h a t  t i m e  required 
by the  p i l o t  f o r  the  f i n a l  
landing maneuver a f t e r  
becoming v i sua l  can be anal- 
yzed as follows (see r e f .  9 ) :  

- 

3000 - Figure 4 shows t h e  

(1) 2 t o  3 seconds f o r  
recognition of the  
s i t ua t ion  and 
decision 

0 20 40 60 80 I00 120 140 
APPROACH SPEED,VKNOTS (2)  2 seconds f o r  devel- 

oping cues for the  

Figure 3.- S lant  range vis ib i l i ty  required fo r  VTOL and STOL operations, 
applicable t o  3 O  or 60 approach angles. 

3201 280 

i n i t i a t i o n  of f l a r e  
or deceleration 

(3) 1 t o  2 seconds t o  
i n i t i a t e  a i r c r a f t  
response 

240 - 

200 - 

Thus a t o t a l  of about 6 sec- 
onds i s  required from break- 
out u n t i l  i n i t i a t i o n  of f l a r e  
or deceleration. The average 
operational VTOL deceleration 
i s  considered t o  be O.l>g. 
The analysis  does not specif-  
i c a l l y  consider any but minor 
changes i n  alinement of the  
f l i g h t  path a f t e r  breakout. 

I I I I I I I The p l o t s  show c l ea r ly  

APPROACH SPEED, VKN0l-s 

0 20 40 60 80 100 120 140 t h a t  t h e  v i s i b i l i t y  and 
ce i l i ng  required a re  func- 
t i o n s  of t he  a i r c r a f t  speed. 

Figure 4.- Ceil ing required fo r  VTOL and STOL approaches for two 
qlide angles. 

The speed t h a t  i s  important 
here i s  ac tua l ly  ground speed. 
Also,  f o r  any given speed, a 

VTOL landing requires more v i s i b i l i t y  and ce i l i ng  than does an STOL landing 
because the  VTOL must decelerate t o  zero speed within the  v i s i b i l i t y  exis t ing,  
whereas the  STOL can lose i t s  speed on a runway. 
t h e  VTOL can land as an STOL when the  s i t ua t ion  d i c t a t e s .  
ce i l i ng  required i s  almost d i r ec t ly  proportional t o  angle of approach, so, for 

It i s  assumed throughout t h a t  
Furthermore, the  

, 
b 



minimum ce i l ing  operation, it i s  bes t  t o  operate a t  3 O  i f  otherwise feas ib le .  
If  not ,  a reduction i n  speed i s  necessary. 

Should the  a i r c r a f t  not be a l ined  with the  intended t rack  when breaking 
out, a "sidestep" maneuver i s ,  of course, required. 
such a maneuver a t  constant bank angle i s  a d i r ec t  function of speed as shown 

The distance required f o r  

IO DEG BANK 
150 FT 
f j RUNWAi\--\-- 

p 8 4 4  FT AT 60 KNOTS-] 
1692 FT AT 120 KNOTS 

Figure 5.- "Sidestep" maneuvers calculated fo r  100 bank angle at two speeds. 
Time required i s  constant. 

F1xjLOW CRUISE 

120K 

__ 1 SPEED 

IN I MUM 
120K 

,A &REF'!N E 80K 
(- 1112 MIN 

PATTERN 

INTERCEPT 

Figure 6.- Comparison of i ns t rumen t  approach patterns for V/STOL and conven- 
t ional aircraft. 

i n  f igure  5 ,  t he  t i m e  
remaining constant. How- 
ever, t i m e  can be traded 
f o r  distance a t  t h e  des i re  
of t he  p i l o t .  Such a 
maneuver could, i f  la rge  
enough, add t o  the  time 
and distance required 
before f lare i n  STDL 
operation, but would prob- 
ably not add t i m e  or dis- 
tance i n  t h e  VTOL case 
because of t he  addi t iona l  
t i m e  avai lable  while t h e  
VTOL i s  decelerating t o  
zero speed. 

The Pat tern 

On the  bas i s  of past  
experience i n  attempting 
t o  f l y  "high-performance" 
p ro f i l e s ,  a 60 gl ide  path 
i s  chosen t o  a VTOL 
landing area 500 f e e t  
square and i s  the  bas i s  
f o r  es tabl ishing the  
i l l u s t r a t i v e  pa t t e rn  i n  
f igure  6. The 6 O  slope 
provides good t e r r a i n  
clearance and shortens 
the  f i n a l  approach t o  
about half  t h a t  f o r  a 3 O  

slope. 
exceeding a rate of descent of 700 ft/min. 
of about 45 knots i s  assumed since t h i s  speed gives a VTOL landing capabi l i ty  
with about a 100-foot ce i l i ng  and l/b-mile v i s i b i l i t y .  
ably the  minimum p r a c t i c a l  speed fo r  t h e  near future from t h e  standpoint of 
handling qua l i t i e s  and the  e f f ec t s  of average winds. 

The 6 O  slope a l s o  allows a fa i r  range of approach speeds without 
I n  figure 6 a f i n a l  approach speed 

Also, 45 knots i s  prob- 

The complete approach pat tern,as  t h e  a i r c r a f t  f l i e s  i t , w i l l  now be dis- 

The a i r c r a f t  w i l l  be slowed while 
cussed. It i s  assumed t h a t  some type of navigational f i x  i s  provided t o  estab- 
l i s h  the  entrance t o  the  landing pat tern.  
approaching t h e  f i x  so as t o  pass t h e  f i x  a t  minimum airplane speed. L i f t  
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engines may well  have t o  be started p r i o r  t o  reaching the  f i x .  
i s  turned t o  a downwind heading and a p a r t i a l  conversion i s  made so a s  t o  pass 
through the conversion stages where la rge  longi tudinal  trim changes and strong 
ballooning tendencies may occur and where large power changes may be required 
before precis ion navigation i s  necessary. 
as possible i s  established which w i l l  allow adequate maneuvering. This speed 
might be about 75 t o  90 knots. 
enough t o  allow adequate t i m e  f o r  es tabl ishing t h e  inbound alinement after 
course i s  reversed before intercept ing the g l ide  path, or perhaps 1 minutes. 

The a i r c r a f t  

A speed as near final-approach speed 

The downwind leg otherwise need be only long 

1 r 
The pa t te rn  turns  a r e  a l l  assumed t o  be made a t  a bank angle no grea te r  

than 20'. 
unknown wind e f f ec t s .  

The crosswind l e g  i s  about 1/2 minute long, primarily t o  allow for 

A s  t he  tu rn  i s  made in to  the  f i n a l  approach course, bracketing of t he  
inbound course i s  begun and the  speed i s  reduced almost t o  that f o r  f i n a l  
descent. Establishing alinement has been found t o  require about 1 minute. 
A t  about 45 t o  50 knots, then, t he  f i n a l  g l ide  path of 6' i s  entered from 
about 1000 feet with configuration adjustment as required. Some anticipa- 
t i o n  of t he  g l ide  slope i s  required as there  i s  a tendency t o  overshoot t he  
steeper slope and t o  start the  descent high on t h e  g l ide  path. 
descent w i l l  require about 11 minutes t o  s t ab i l i ze ,  so  the  1000-foot i n t e r -  

cept w i l l  provide enough t i m e  f o r  descent r a t e s  up t o  TOO ft/min. 

The f i n a l  

2 

A f t e r  breakout from the  instrument conditions and after s ight ing the  
landing area,  f i n a l  conversion and deceleration t o  hovering i s  made. 
average O.l5g deceleration assumed, t he  hover w i l l  be reached i n  about 22 sec- 
onds. The landing should then not require more than 10 or so  seconds. The 
t i m e  after breakout t o  landing i s  thus assumed t o  be about 1/2 minute. 

A t  t h e  

A comparison of t h e  pa t te rn  s i z e  of a V/STOL operated i n  t h i s  manner with 
a conventional a i r c r a f t  pa t te rn  i s  shown and it i s  approximately half  t he  s i z e  
of t he  airplane pa t t e rn  because of the  reduced speed and the  steeper gl ide path 
assumed. 

Adding up the  slow-speed segments of t he  V/STOL pa t t e rn  i l l u s t r a t ed ,  one 
f inds  t h a t  about 5 minutes have been spent a t  low speeds. For j e t  V/STOL t h i s  
t o t a l  time means t h a t  f o r  5 minutes the  t h r u s t  may be as high as 80 t o  90 per- 
cent of the  hovering th rus t .  This i s ,  indeed, hard on f u e l  consumption and 
could very w e l l  mean a prohibi t ive reduction i n  radius of act ion o r  payload a s  
a V/STOL. For such a case the  only a l t e rna t ive  &town a t  present seems t o  be t o  
rever t  t o  operation a s  a normal a i rplane f o r  t he  instrument approach p r i o r  t o  
breakout. Ceiling and v i s i b i l i t y  minima would be correspondingly increased. 

It i s  of i n t e r e s t  t o  note t h a t  i n  a v i sua l  approach, given the  a i r c r a f t  
handling qua l i t i e s  specif ied i n  reference 10 with respect t o  longitudinal t r i m  
and control,  t h e  p i l o t  can probably decelerate from l 5 O  knots t o  a v e r t i c a l  

landing i n  about 1 t o  1L minutes, even along moderately curved fl ight paths, t o  
2 
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suit t h e  s i tua t ion  and t h e  p i l o t ' s  own judgment. 

t o  4 minutes of high-power operation over t he  instrument approach described. 
achieve t h i s  saving i n  an instrument pat tern,  the  p i l o t  must be able  t o  obtain 
and in tegra te  the  same information i n  a given t i m e  from instrument displays a s  
he does natural ly  from the  r e a l  world during a v isua l  approach. 
rapid assimilation of information desired i s  not possible with present displays, 
t h e  saving of a Large p a r t  of t h i s  9 t o  4 minutes difference i n  high-power 

operation sets a goal f o r  V/STOL instrument f l i g h t  development. 

Thus, he can save a t  l e a s t  9 
2 
To 

Although the  

2 

In addi t ion t o  shortening t h e  time i n  low-speed fl ight,  fur ther  fuel 
savings may w e l l  be made by t h e  choice of optimum control  powers about t he  
three body axes, and optimum s t a b i l i t y  and control  augmentation. 
t r o l  power be too low, f o r  instance,  t he  bleed-flow demands or control  applica- 
t i o n s  may be required f o r  excessive lengths of t i m e  t o  accomplish corrections,  
thus using excess power and fuel. Also, if the  augmentation i s  adequate, cor- 
rec t ive  control  inputs by t h e  augmentation system can correct  deviations sooner 
than the  human p i l o t  could, thus demanding l e s s  power and fuel. L i t t l e  usefu l  
data along these l i n e s  have y e t  been obtained. 

Should con- 

A i r  Traf f ic  Control With V/STOL 

A question immediately r a i sed  by commercial operators when use of low 
speeds f o r  pa t te rns  and landing i s  discussed i s :  
a i r c r a f t ?  Airway Traf f ic  Control (ATC) i s  1 

"How do we  use it with CTOL 

LA\  
RUh 

- 

TAKE 

VG AY  RUN^ 
1 

FF I 

LANDING 
RUNWAY - 

Figure 7.- Possible airport layout to accommodate mixed 
V I  STOL-CTOL traffic. 

even now asking some a i r c r a f t  t o  use 
higher speeds on the  approach t o  
speed t h e  orderly flow of t ra f f ic . ' '  
It i s  obvious t h a t  the V/STOL a i r -  
c r a f t  cannot be used a s  such i n  the  
same approach and landing lanes as 
t h e  CTOL and survive. However, 
with long-range ATC and a i rpo r t  
planning i n  t h e  commercial case it 
would s e e m  t h a t ,  f o r  short-haul and 
feeder-l ine service t o  the  la rge  
terminal a i rpo r t s ,  separate landing 
areas and approach guidance systems 
could be provided which would per- 
m i t  t he  independent operation of 
V/STOL a t  CTOL a i rpo r t s .  Figure 7 
i l l u s t r a t e s  a possible  a i rpo r t  
design with mixed t r a f f i c  i n  mind. 

A way of handling the  V/STOL 
t r a f f i c ,  when mixed with CTOL, might 
be t o  arrange t h e  approach lanes a t  
nearly a r igh t  angle t o  t h e  approach 
lanes f o r  CTOL and assign them t o  
lower a l t i t u d e  l eve l s  from, say, 

9 



1500 t o  3300 f e e t .  
a r e  operating a t  higher a l t i t u d e s ,  have pressurizat ion,  and a r e  capable of 
steep descent paths,  it should not be a great  handicap t o  have them descend t o  
t h e i r  own f i n a l  approach paths a f t e r  passing over t he  V/STOL leve l s .  
V/STOL holding pa t te rns  could be a t  high a l t i t u d e s ,  but not c loser  than 30 t o  
50 miles, f o r  instance,  from the  a i r p o r t  so t h a t  descent could be made a t  some 
distance from the  a i r p o r t  i n t o  t h e  low-level approach lanes  t o  the  V/STOL 
instrument approach f a c i l i t i e s  without in te r fe rence  with the  higher a l t i t u d e  
CTOL flow. 
applied t o  Kennedy In te rna t iona l  Ai rpor t .  

Since the  high-performance CTOL a i r c r a f t  of modern f l e e t s  

The 

Figure 8, from reference 11, i s  an i l l u s t r a t i o n  of t h i s  idea as 

L'CTOL APPROACH LAN ES 

Figure 8.- Possible lower level rout ings i n t o  VI STOL approach faci l i t ies at a major airport. 

The V/STOL a i r c r a f t  can operate a t  well-regulated, s l o w  maneuvering and 
approach speeds t o  keep the  approach pa t t e rn  small, a s  was i l l u s t r a t e d  i n  f i g -  
ure  6. It would a l so  be desirable  t o  use a t  l e a s t  a 6' f i n a l  descent path t o  
keep the  pa t t e rn  small. 
t i o n a l t o  allow f i n a l  approaches a s  close i n t o  the wind as possible ,  but a l so  

The letdown f a c i l i t i e s  f o r  V/STOL should be omnidirec- 
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t o  insure t h a t  there  i s  no conf l ic t  with CTOL t r a f f i c  because of direct ion of 
landing. Perhaps an omniglide path capabl l i ty  would be desirable.  

For the  separation of slower V/STOL a i r c r a f t  from each other and f o r  sepa- 
r a t ion  from the  CTOL a l so ,  it would seem reasonable t o  reduce separation t o  
l m i l e  ins tead of t he  present 3 miles. For example, a t  50 knots, i f  on a col-  
l i s i o n  course with another a i r c r a f t ,  a 3-second delay f o r  decision plus  t h e  
radius of t u rn  executed would be l i t t l e  more than 1/8 m i l e ,  whereas a t  
180 knots, t h i s  distance i s  nearly 11 miles. Thus, 1-mile separation would 

seem t o  provide more than adequate safe ty  a t  speeds of t he  order of 50 knots. 
This 1 m i l e  would represent about 1-minute separation on f i n a l  approach. This 
t i m e  separation i s  not thought t o  be a problem from t h e  vortex wake standpoint 
because : 

4 

(1) The downward d r i f t  of t h e  vortex t r a i l  would be a t  a higher rate than 
f o r  CTOL a i r c r a f t  because of t h e  higher e f fec t ive  lift coef f ic ien ts  involved. 

(2 )  The vortex wake would tend t o  de te r iora te  i n  s t rength more rapidly 
because of t he  v o r t i c i t y  along t h e  span due t o  the  l i f t i n g  systems of t he  
V/STOL. (See r e f .  12. ) 

O f  course, it i s  important t h a t  c losely spaced a i r c r a f t  follow the  same gl ide 
path t o  insure that following a i r c r a f t  will def in i t e ly  be above t h e  preceding 
vortex t r a i l .  

Assuming t h a t  it i s  f eas ib l e  t o  land V/STOL and CTOL a i r c r a f t  simultane- 
ously on approximately p a r a l l e l  paths with no more than a mile separation, t h e  
capacity of the  a i rpo r t  should be a t  least doubled. For instance,  with 1-minute 
separation t h e  V/STOL could land 60 per  hour, whereas the  conventional t r a f f i c  
with 11 minutes separation could land 40 per hour f o r  a t o t a l  of 100 a i r c r a f t  

per  hour. T h i s ,  of course, i s  assuming only one landing pad, s t r i p ,  and a i d  
f o r  each type of a i r c r a f t .  The increased capacity po ten t i a l  of t he  a i rpo r t  

2 

should, indeed, be of i n t e r e s t  t o  
130 commercial operators f o r  economic 

reasons, eventually. 

The power required during t h e  
landing approach f o r  V/STOL, other 
than hel icopters ,  w i l l  be high and 
the  noise produced higher than 

90 conventional types. Figure 9,  
from reference 11, compares t h e  
noise l e v e l  on the  bas i s  of dis- 

PNdb 

70 tance from touchdown f o r  propel ler-  
~~ 

1 I I I I I 1 driven types, the V/STOL on a 60 
0 I 2 3 4 5 path, and the  conventional on a 3 O  

path. The V/STOL i s  the  nois ie r ,  DISTANCE FROM TOUCHDOWN, MI 

but i f  landing on a pad some dis- 
tance ins ide  t h e  a i rpo r t  bound- 
aries, the noise level  a t  t h e  

Figure 9.- Landing noise for propeller V I  STOL of about 55,000 pounds and 
transport airplane. The V/STOL i s  descending at 60. 



130 

I10 

PNdb 

90 

boundary may be less. Figure 10, 
from reference 11, compares j e t  
V/STOL and conventional a i r c r a f t  
with respect t o  noise, again on a 
60 slope f o r  the  V/STOL and 3 O  
slope f o r  t h e  conventional. I n  
t h i s  case, t he  V/STOL i s  less 

- noisy than the  conventional j e t ,  
pr imari ly  because of t he  steeper 
flight path. 

ACCEPTABLE LEVEL 

V/STOL 

I I I I I 
70 L 

slow f l i g h t  . Should improved 
p i l o t  displays o r  approach tech- 
niques be developed t h a t  would 
reduce the  time i n  slow f l i g h t ,  

Figure 10.- Landing noise for  jet V I  STOL of about 70,000 pounds and 
t ranspor t  airplane. The VI  STOL i s  descending at 69 

t h e  pat terns  i l l u s t r a t e d  would cer ta in ly  change. The manner i n  which they 
would change cannot be forecast  a t  t he  present,  but it is  hoped t h a t  t he  higher 
maneuvering speeds p r i o r  t o  i n i t i a t i o n  of the  deceleration t o  landing w i l l  not 
expand the  overa l l  pa t te rn  required. 

RESEARCH AND DEVELOPMENT REQUIRED 

It has been indicated t h a t  one of t h e  important capab i l i t i e s  of V/STOL 
a i r c r a f t ,  t he  a b i l i t y  t o  reduce the  instrument weather minima f o r  safe opera- 
t ions ,  can be rea l ized  i n  a reasonable t i m e  frame only i f  considerable e f f o r t  
i s  begun now t o  support research and development e f f o r t  i n  a t  least three  areas.  
These areas are: 

(1) The handling qua l i t i e s  i n  t e r m s  of cont ro l  power and t h e  degree of 
s t a b i l i t y  augmentation and/or control  interconnection arrangements must be 
worked out so t h a t  t h e  p i lo t ing  workload a t  V/STOL speeds becomes equivalent t o  
present CTOL t ransports .  

(2)  Extensive research and development of p i l o t  displays i s  needed f o r  t he  
V/STOL capab i l i t i e s  of making s l o w  and steep approaches. 
display which enabled him t o  assess  h i s  s i t ua t ion  i n  the  r e a l  world a s  readi ly  
a s  he does i n  a v i sua l  approach, he could do h i s  t r a n s i t i o n  during h i s  approach 
i n  such a manner as t o  save several  minutes of high-power operation. The f l i g h t  
d i rec tor  can make a given t a s k  considerably eas ie r ,  but does not give the  p i l o t  
t h e  knowledge of h i s  s i t ua t ion  necessary f o r  him t o  use h i s  own good judgment 
i n  se lec t ing  or adjust ing the  t r a j ec to ry  of h i s  a i r c r a f t .  Considerable progress 
has been made i n  recent years i n  the  form of contact analog representations of 
t he  real world although they are s t i l l  b u l w  and complex. However, i n su f f i c i en t  
information i s  presented i n  present representations without addi t ional  ins t ru-  
ments t o  adequately judge height and f l ight-path angle, and the  distance t o  and 
rate of closure on a landing spot.  

I f  the  p i l o t  had a 

A l s o ,  t h e  angular f i e l d  i s  inadequate f o r  
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landing-pattern maneuvering and f ly ing  s teep gl ide paths. 
three-dimensional effect iveness  i s  lacking. 

I n  other words, t he  

( 3 )  A n  ac t ive  program of spec i f ic  f l i g h t  research should be undertaken 
with the  f irst  generation of near-operational V/STOL airplanes.  
research should be directed toward development of p rac t i ca l  precision ins t ru-  
ment approach techniques with the  saving of t i m e  and f u e l  i n  mind, and toward 
development of s t a b i l i t y  augmentation and p i l o t  display requirements. 

This spec i f ic  

The cross sect ion of a i r c r a f t  used should be as comprehensive as possible.  
It should encompass the  several  fixed-wing planforms, the  t i l t -wing,  and varied 
l i f t - t h r u s t  arrangements so t h a t  a broad spectrum of problems associated with 
s t a l l i ng ,  f l ight-path control,  conversion, and longitudinal and l a t e r a l  sta- 
b i l i t y  and control  i s  avai lable  f o r  study. The techniques f o r  slow and steep 
approaches by instrument m a y  be qui te  d i f f e ren t  f o r  fixed-wing types where the  
wing must be kept below s t a l l  incidence as compared with the  t i l t -wing,  
propeller-driven type i n  which incidence i s  very high and s t a l l i n g  i s  a func- 
t i o n  of power. It i s  rea l ized  t h a t  single-place a i r c r a f t  such as the  f igh te r s  
a re  not t he  best  su i ted  f o r  instrument f l igh t  studies, but it i s  f e l t  that  con- 
siderable can be learned by using chase a i r c r a f t  techniques and having a spe- 
c i f i c  objective t o  explore r e a l i s t i c  instrument f l i g h t  techniques. 

CONCLUDING REMARKS 

One of the  real  benefi ts  t o  be gained by the  use of V/STOL a i r c r a f t  i s  the  
reduction of weather minima f o r  safe, operational use. 

I n  order t o  make t h i s  poss ib i l i t y  a r e a l i t y  i n  the  next 10 t o  15 years,  
it i s  necessary t o  expedite work now along these l ines :  

(1) Improve the  a i r c r a f t  handling qua l i t i e s  a s  required t o  make t h e  p i l o t  
workload comparable with those f o r  present CTOL a i r c r a f t .  

(2)  Develop vas t ly  improved p i l o t  displays.  

( 3 )  Conduct f l i g h t  research, spec i f i ca l ly  t o  explore p rac t i ca l  precis ion 
instrument approach techniques, considering the  hown capab i l i t i e s  of guidance 
systems. 

An excel lent  opportunity e x i s t s  f o r  ge t t ing  information along a l l  th ree  of 
these l i n e s  by doing objective f l i g h t  research with the. generation of V/STOL 
a i r c r a f t  now approaching f l i g h t  status i n  Europe and USA. 

I n  order t o  use V/STOL a i r c r a f t  i n  high-traffic-density terminal areas  
effect ively,  a new approach t o  the  ATC system i s  advisable and arrangements 



should be provided f o r  separate approach and landing f a c i l i t i e s  f o r  V/STOL 
a i r c r a f t  where the  same a i rpo r t s  a r e  used a s  for CTOL a i r c r a f t .  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley S ta t ion ,  Hampton, V a . ,  January 12, 1965. 
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